On Complex Valued Convolutional Neural Networks

نویسنده

  • Nitzan Guberman
چکیده

Convolutional neural networks (CNNs) are the cutting edge model for supervised machine learning in computer vision. In recent years CNNs have outperformed traditional approaches in many computer vision tasks such as object detection, image classification and face recognition. CNNs are vulnerable to overfitting, and a lot of research focuses on finding regularization methods to overcome it. One approach is designing task specific models based on prior knowledge. Several works have shown that properties of natural images can be easily captured using complex numbers. Motivated by these works, we present a variation of the CNN model with complex valued input and weights. We construct the complex model as a generalization of the real model. Lack of order over the complex field raises several difficulties both in the definition and in the training of the network. We address these issues and suggest possible solutions. The resulting model is shown to be a restricted form of a real valued CNN with twice the parameters. It is sensitive to phase structure, and we suggest it serves as a regularized model for problems where such structure is important. This suggestion is verified empirically by comparing the performance of a complex and a real network in the problem of cell detection. The two networks achieve comparable results, and although the complex model is hard to train, it is significantly less vulnerable to overfitting. We also demonstrate that the complex network detects meaningful phase structure in the data.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Split-Complex Convolutional Neural Networks

Beginning with the seminal work of [1], the last half-decade of artificial intelligence and computer vision has been dominated by the stunning success of convolutional neural networks (CNNs). In visual recognition, a robust classifier must be able to recognize objects under deformation. One solution that has been proposed for improving invariance under rotation is complex-valued CNNs [2, 3]. Wh...

متن کامل

Deep Complex Networks

At present, the vast majority of building blocks, techniques, and architectures for deep learning are based on real-valued operations and representations. However, recent work on recurrent neural networks and older fundamental theoretical analysis suggests that complex numbers could have a richer representational capacity and could also facilitate noise-robust memory retrieval mechanisms. Despi...

متن کامل

A multi-scale convolutional neural network for automatic cloud and cloud shadow detection from Gaofen-1 images

The reconstruction of the information contaminated by cloud and cloud shadow is an important step in pre-processing of high-resolution satellite images. The cloud and cloud shadow automatic segmentation could be the first step in the process of reconstructing the information contaminated by cloud and cloud shadow. This stage is a remarkable challenge due to the relatively inefficient performanc...

متن کامل

Cystoscopy Image Classication Using Deep Convolutional Neural Networks

In the past three decades, the use of smart methods in medical diagnostic systems has attractedthe attention of many researchers. However, no smart activity has been provided in the eld ofmedical image processing for diagnosis of bladder cancer through cystoscopy images despite the highprevalence in the world. In this paper, two well-known convolutional neural networks (CNNs) ...

متن کامل

A Mathematical Motivation for Complex-Valued Convolutional Networks

A complex-valued convolutional network (convnet) implements the repeated application of the following composition of three operations, recursively applying the composition to an input vector of nonnegative real numbers: (1) convolution with complex-valued vectors, followed by (2) taking the absolute value of every entry of the resulting vectors, followed by (3) local averaging. For processing r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1602.09046  شماره 

صفحات  -

تاریخ انتشار 2016